Indian Statistical Institute, Bangalore

B. Math (Hons.) Second Year

First Semester - Optimization

Midterm Exam Maximum marks: 30 Date: September 14, 2018 Duration: 2.30 hours

Answer any five, each question carries 6 marks

1. Prove that for any $p \times q$ non-zero matrix A, there exists an invertible matrix G such that GA is upper echolen.

2. (a) Find the
$$QR$$
 decomposition of $\begin{pmatrix} 1 & 0 & 2 \\ 1 & 2 & 0 \\ 0 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$ (Marks: 4).

(b) Give a 3×3 example to show that QR decomposition is not unique.

- 3. (a) Prove that every $p \times q$ -matrix has singular value decomposition.
 - (b) Prove that the singular values of A and A^* coincide. (Marks: 2).
- 4. (a) If A = diag(r₁, · · · , r_d), find ||A||? (Marks: 2).
 (b) Let A ∈ M_{p×q}(ℂ) and s₁ be the first singular value. Prove that s₁ = ||A||.
- 5. Let S be a subspace of \mathbb{R}^n and $a, u \in \mathbb{R}^n$. Denote $W = a + S = \{a + x \mid x \in S\}$.
 - (a) Prove that u can be written uniquely as w + y for $w \in W$ and $y \in S^{\perp}$.

(b) Prove that $\min_{y \in W} ||u - y||$ has a unique solution (Marks: 3).

- 6. (a) Prove that spr(A) ≤ ||A|| for any square matrix A.
 (b) Let A be a non-negative irreducible matrix. If λ is a eigenvalue of A with eigenvector x ≥ 0, prove that λ is the spectral radius (Marks: 4).
- 7. Prove that $A = \begin{pmatrix} 0 & 1 & 0 \\ 3 & 0 & 3 \\ 0 & 2 & 0 \end{pmatrix}$ is irreducible and find its Perron-pair. Is it primitive? Justify your answer.